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Abstract. We report on a measurement of the differential cross sections of inclusive K±
890 production in

Σ−, π− and neutron beams. A strong leading particle effect was observed for K−
890 production by Σ−. The

measured xF –distributions are compared with calculations based on the Lund model (PYTHIA) and the
quark-gluon string model.
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1 Introduction

Although a long time has passed since the discovery of
strange particles, the strange sector still remains a rela-
tively poorly explored region in hadron physics. The inter-
action properties have been measured for only a few of par-
ticles, and the underlying mechanisms need further clari-
fication. The production of strange quarks and their sub-
sequent hadronization in hadron–hadron collisions consti-
tute an important benchmark test for phenomenological
models describing soft phenomena [1]–[3]. The data sup-
plied by the recent WA89 experiment at CERN signifi-
cantly reduce the lack of experimental information in this
field [32–34].
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In the present paper we report on the inclusive pro-
duction of K±

890 mesons in nuclear targets by Σ− and π−
of 345 GeV/c momentum and by neutrons of 260 GeV/c
mean momentum.

The inclusive hadronic production of K890 in the cen-
tral region at beam momenta of 6–400 GeV/c has been
studied by several experiments using π±, K± and proton
beams [4]–[18]. At large xF some experiments have studied
only leading-particle channels, owing to a lack of statistics
for other channels.

The results presented here are the first measurement
of Σ−-inducedK890 production cross sections. The results
obtained simultaneously with π− and n beams provide us
with interesting complementary information, allowing to
compare data from different beams measured in the same
experiment. Together with the existing data on K890 pro-
duction mentioned above and the large amount of data on
hyperon and hyperon resonance production (see [32]–[34]
and earlier references therein) there now exists a com-
prehensive set of data on inclusive hadronic production
processes at large momenta, which allows stringent tests
of existing models of hadron production.

We compare our experimental results with calculations
using the Lund model (PYTHIA) [20]. and the quark-
gluon string model (QGSM) [21]–[27] which was specially
developed for soft hadroproduction phenomena at high
energies.

2 Hyperon beam and experimental apparatus

The hyperon beam was derived from an external proton
beam of the CERN-SPS, hitting a hyperon production tar-
get placed 16m upstream of the experimental target. Neg-
ative secondaries with a mean momentum of 345 GeV/c
and a momentum spread σ(p)/p ≈ 9% were selected in a
magnetic channel. The production angles relative to the
proton beam were smaller than 0.5 mrad. At the exper-
imental target, the beam consisted of π−, K−, Σ− and
Ξ− in the ratio 2.3: 0.025: 1: 0.012. A transition radia-
tion detector (TRD) made up of 10 MWPCs interleaved
with foam radiators allowed to suppress π− at the trigger
level. Typically, about 1.8 · 105 Σ− and 4.5 · 105 π− were
delivered to the target during one SPS-spill, which had an
effective length of about 1.5 s.

Σ− decays upstream of the target were a source of
neutrons used in our measurement as a neutron beam.
The momenta of these neutrons were defined as the dif-
ference between the average Σ− momentum and the mo-
mentum of the associated π− measured in the spectrome-
ter. The neutron spectrum had an average momentum of
260 GeV/c and a width of σ(p)/p = 15%. More details
can be found in [29].

The experimental target consisted of one copper and
three carbon blocks arranged in a row along the beam,
with thicknesses corresponding to 0.026 λI and three times
0.0083 λI , resp. At the target, the beam had a width of
3 cm and a height of 1.7 cm. Microstrip detectors up-
stream and downstream of the target allowed to mea-
sure the tracks of the incoming beam particle and of the

charged particles produced in the target blocks. The tar-
get was positioned 14m upstream of the center of the
Omega spectrometer magnet [30] so that a field-free de-
cay region of 10m length was provided for hyperon and
K0

s decays. Tracks of charged particles were measured in-
side the magnet and in the field-free regions upstream and
downstream by MWPCs and driftchambers, with a total
of 130 planes. The Omega magnet provided a field inte-
gral of 7.5 Tm, and the momentum resolution achieved
was σ(p)/p2 ≈ 10−4 (GeV/c)−1.

Downstream of the spectrometer, a ring-imaging
Cherenkov detector, an electromagnetic calorimeter and a
hadron calorimeter (SPACAL) were placed. In the present
measurement we did not use these two detectors.

The main trigger selected about 25% of all interac-
tions, using multiplicities measured in microstrip counters
upstream and downstream of the target, and in scintilla-
tor hodoscopes and MWPCs behind the Omega magnet.
Correlations between hits in different detectors were used
in the trigger to increase the fraction of events with high-
momentum particles, thus reducing background from low-
momentum pions in the beam. In addition, a reduced sam-
ple of beam triggers was recorded for trigger calibration
purposes. The results presented in this article are based
on 100 million events recorded in 1993.

3 Event selection

The K±
890 states were reconstructed from the K±

890 →K0
s

π±, K0
s →π+π− decay chain.

The interaction vertex had to contain at least two out-
going charged tracks reconstructed in the microstrip coun-
ters downstream of the target. At least one of them had to
be connected to a track reconstructed in the spectrome-
ter, so that it could be interpreted as a charged decay pion
from a K±

890 decay. The reconstructed vertex position had
to be inside of a target block where in each coordinate an
additional margin of 3σ was allowed.

For Σ− and π− interactions, the beam track recon-
structed in the microstrip counters upstream of the target
had to have a transverse distance to the interaction vertex
of less than 6σ (σ ≈ 25µm).

For neutron interactions, the beam track interpreted
as the π− track from a Σ− decay had to have a trans-
verse distance to the interaction vertex of more than 6σ.
In addition, this assumed π− track had to be connected
to a track in the spectrometer corresponding to a nega-
tive particle with a momentum of less than 140 GeV/c,
the maximal π− momentum in Σ− → nπ− decays at
< p >≈ 345 GeV/c. These cuts were optimized to sepa-
rate Σ−, π− interactions from neutron interactions.

K0
s candidates were selected from all pairs of positive

and negative tracks which formed a vertex in the decay
zone between the microstrip detectors downstream of the
target and the Omega magnet. The distance between the
two tracks at the decay point had to be smaller than 3
mm. The K0

s trajectory reconstructed from the decay pi-
ons had to have a transverse distance to the interaction
vertex of less than 12 mm. The effective π+π− mass had
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Fig. 1. Armenteros-Podolanski plot of the V 0. e+e− pairs were
cut at pt = 0.015GeV/c. p±

L and pt are the laboratory longi-
tudial and transverse momenta of the decay tracks with the
respect to the V 0 direction

to be within 5 σE and 15 MeV/c2 of the K0
s mass, the

mass error σE being typically 2.2 MeV/c2. The K0
s mo-

mentum had to be below 260 GeV/c. The K0
s sample was

contaminated by 4.5% of Λ0 and 1.6% of Λ
0
as can be

seen from Armenteros–Podolanski plot (Fig. 1) [31]. Am-
biguous V 0 candidates were removed from the data and
corresponding correction factors were applied in the cross
section evaluation.

The contamination from e+e−pairs was suppressed by
requiring that the transverse CMS momenta had to be
greater than 15 MeV/c.

These K0
s candidates were then combined with all

charged particles coming from the primary vertex to form
candidates for K±

890 →K0
sπ

± decays.
Figure 2 shows the observed K0

Sπ
± mass distributions.

Clear signals are seen at the K±
890 mass. The distribu-

tions were fitted with Voigt function (a convolution of
a Breit-Wigner for the intrinsic width of the resonance
and a gaussian for the mass resolution of the apparatus).
The width of signals is dominated by the intrinsic width
Γ (K±

890) = (47.9 ± 1.2) MeV/c2. The experimental mass
resolution was estimated in Monte-Carlo simulations to be
about 5 MeV/c2 and was used in our fit. The shape of the
background was determined by event mixing, combining
the K0

s candidates from a given event with the decay pion
candidates from another event.

4 The K±
890 production cross sections

The differential cross section as a function of the Feyn-
man variable xF and p2

t was calculated by the following
formula:
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σ(xF , p
2
t ) =

NK(890)(xF , p
2
t )

BR · ε(xF , p2
t ) Nb ρ l NA/M

Here NK(890) is the number of events in the K890 peak in
particular (xF , p

2
t ) region, BR means branching ratio for

the chain K±
890 → K0

Sπ
±, K0

S → π+π−, ε is the overall ac-
ceptance including reconstruction and trigger efficiencies,
Nb is the number of incoming beam particles tagged as
Σ−, corrected for losses due to the deadtimes of the trig-
ger and the data acquisition system. The K±

890 →K0
Sπ

±
decay branching ratio was set to be 2/3 as required by
isospin conservation. M , ρ and l are the atomic mass, the
density and the length of the target, NA is the Avogadro
number.

The hyperon beam actually contained different com-
ponents as described in our previous publications [29,32].
The Σ− sample identified by the TRD contained about
(12±2)% of fast π− , (2.0±0.5)% of K− and (1.3±0.3)%
of Ξ− . The contamination from π− interactions was cor-
rected for using the cross sections observed in our experi-
ment. For the contaminations from the small K− and Ξ−
beam rates we assumed cross sections equal to the Σ−
cross sections, and added the amount of these contribu-
tions to the systematic errors. In the π− sample identified
by the TRD the total remaining contamination amounts
to 1.%, mainly Σ−. We corrected for the small contri-
bution from Σ− using our measured cross sections. The
even smaller contributions from Ξ−and K− could safely
be neglected.

The corrected differential production cross sections are
shown in Figs. 3a–d and listed in Tables 3–7 for copper
and carbon targets, respectively. Only fit errors are quoted
here. To these fit errors we have to add systematic uncer-
tainties of the reconstruction efficiency (≈ 15%) and the
trigger efficiency (≈ 10%). The uncertainty from the Σ−



50 The WA89 Collaboration: A measurement of K∗± production in the hyperon beam experiment at CERN

10
-1

1

10

0.1 0.3 0.5 0.7

a)

dσ
/d

x F
 (

m
b)

xF

10
-1

1

10

0 0.6 1.2 1.8 2.4

dσ
/p

t2   
 (

m
b 

G
eV

-2
 c

2 )

pt
2  (GeV2/c2)

b)
Σ−

neutron
π−

10
-1

1

10

10 2

0.1 0.3 0.5 0.7
dσ

/d
x F

 (
m

b)

xF

c)

10
-1

1

10

0 0.6 1.2 1.8 2.4

dσ
/p

t2   
 (

m
b 

G
eV

-2
 c

2 )

pt
2  (GeV2/c2)

d)
Σ−

neutron
π−

Fig. 3a–d. Differential cross
sections of inclusive K−

890 pro-
duction by Σ−, neutrons and
π− in carbon

Table 1. Numbers of observed K0
s decays and total inclusive K±

890 production
cross sections σ per nucleus for xF > 0. σ0 denotes the extrapolated cross
sections per nucleon and α is the measured exponent in the A-dependence
of the cross sections. An 18% systematic uncertainty has to be added to the
statistical error of the cross section

particle target statistic σ, [mb] σ0, [mb] α

Σ− beam

K−
890→K0

sπ
− Cu 97896 ± 3060 35. ± 2.

C 103825 ± 3185 12.0 ± 0.5
N 2.4 ± 0.3 0.64 ± 0.04

K+
890→K0

sπ
+ Cu 25337 ± 1233 11.7 ± 0.8

C 29116 ± 1434 4.4 ± 0.2
N 1.0 ± 0.2 0.59 ± 0.05

π− beam

K−
890→K0

sπ
− Cu 7362 ± 309 25. ± 2.

C 6645 ± 280 8.4 ± 0.5
N 1.7 ± 0.3 0.65 ± 0.06

K+
890→K0

sπ
+ Cu 4288 ± 240 12.2 ± 0.9

C 4833 ± 245 4.8 ± 0.4
N 1.2 ± 0.3 0.56 ± 0.06

neutron beam

K−
890→K0

sπ
− Cu 1227 ± 175 13.2 ± 2.

C 1437 ± 172 5.7 ± 0.9
N 1.6 ± 0.7 0.5 ± 0.1

K+
890→K0

sπ
+ Cu 1609 ± 148 15. ± 2.

C 1789 ± 143 4.2 ± 0.5
N 0.6 ± 0.2 0.7 ± 0.1

beam contaminations discussed above is 4% only. Adding
the systematic errors quadratically results in a total sys-
tematic normalization error of 18%.

The differential cross sections were then parameterized
by a function of the form:

d2σ

dp2
tdxF

= C(1 − xF )n · exp(−Bp2
t ), (1)

which is based on quark counting rules and phase space
arguments [36]. The three parameters C,n, and B were

assumed to be independent of p2
t and xF . The values of n

and B obtained from the fits are listed in Table 2 for each
target, and the fits are shown in the figures as straight
lines over the fit range. No significant difference is ob-
served between the values obtained from the copper and
the carbon target.

Figure 4 show the nuclear mass dependence of K±
890

production by Σ− and π− as a function of xF (top) and
p2

t (bottom). The statistics of the neutron beam data were
not sufficient for this analysis. The left-hand scales give
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Table 2. The fit parameters n and B of the cross section parametrisation d2σ/dp2
t dxF =

C(1 − xF )nexp(−Bp2
t ) (see text)

Beam Σ− π− Neutrons
particle target n B n B n B

K−
890→K0

sπ
− Cu 3.0 ± 0.1 2.6 ± 0.1 3.6 ± 0.2 3.2 ± 0.2 4.5 ± 0.8 2.4 ± 0.7

C 2.6 ± 0.1 2.7 ± 0.1 3.4 ± 0.2 3.0 ± 0.2 6.0 ± 1. 2.2 ± 0.4

K+
890→K0

sπ
+ Cu 4.2 ± 0.4 2.2 ± 0.3 3.9 ± 0.3 2.2 ± 0.3 5.7 ± 0.5 1.9 ± 0.4

C 4.8 ± 0.4 2.5 ± 0.3 3.9 ± 0.3 2.6 ± 0.3 5.7 ± 0.6 2.4 ± 0.5

Table 3. Differential production cross sections of K−
890 as a function of xF in mb.

An 18% systematic uncertainty has to be added to the statistical error of the cross
section

Beam Neutrons π− Σ−

xF Copper Carbon Copper Carbon Copper Carbon

0.0–0.1 27. ± 17. 20. ± 11. 84. ± 13. 33. ± 5. 81. ± 9. 31. ± 3.
0.1–0.2 54. ± 10. 22. ± 3. 79. ± 5. 25. ± 2. 107. ± 4. 34. ± 1.
0.2–0.3 33. ± 6. 9. ± 1. 38. ± 3. 10.2 ± 0.7 63. ± 2. 20.7 ± 0.7
0.3–0.4 12. ± 4. 4. ± 1. 22. ± 2. 7.5 ± 0.6 47. ± 2. 15.2 ± 0.5
0.4–0.5 5. ± 2. 0.9 ± 0.8 12. ± 1. 3.8 ± 0.4 23. ± 1. 8.9 ± 0.4
0.5–0.6 − 1.2 ± 0.7 − 3.6 ± 0.4 14.7 ± 0.8 5.3 ± 0.3
0.6–0.7 − − − − 6.1 ± 0.6 2.6 ± 0.2
0.7–0.8 − − − − 3.2 ± 0.6 2.1 ± 0.3

Table 4. Differential production cross sections of K−
890 as a

function of p2
t in mb/(GeV/c)2. An 18% systematic uncertainty

has to be added to the statistical error of the cross section

Beam π− Σ−

p2
t Copper Carbon Copper Carbon

0.0–0.2 61. ± 3. 18. ± 1. 68. ± 2. 24. ± 0.6
0.2–0.4 24. ± 2. 9.7 ± 0.8 34. ± 1. 12.6 ± 0.5
0.4–0.6 14. ± 2. 4.8 ± 0.6 19. ± 1. 8.8 ± 0.4
0.6–0.8 7. ± 1. 3.1 ± 0.4 14.2 ± 0.8 4.4 ± 0.3
0.8–1.0 7. ± 1. 2.0 ± 0.4 11.1 ± 0.8 3.6 ± 0.2
1.0–1.2 2.7 ± 0.8 1.2 ± 0.3 7.1 ± 0.6 2.1 ± 0.2
1.2–1.4 3.4 ± 0.7 1.0 ± 0.2 6.4 ± 0.6 1.4 ± 0.1
1.4–1.6 1.3 ± 0.6 1.0 ± 0.2 4.1 ± 0.4 1.3 ± 0.1
1.6–1.8 1.8 ± 0.4 0.6 ± 0.2 3.4 ± 0.4 0.5 ± 0.1
1.8–2.0 1.3 ± 0.4 0.4 ± 0.1 2.5 ± 0.4 0.5 ± 0.1
2.0–2.2 1.9 ± 0.4 0.2 ± 0.1 1.5 ± 0.3 0.4 ± 0.1
2.2–2.4 0.7 ± 0.3 0.2 ± 0.1 1.3 ± 0.3 0.3 ± 0.1

the cross section ratio:

R =
σCu

σC
· AC

ACu
(2)

The right-hand scales shows the corresponding values of α
in the conventional parametrisation for the A dependence:

σ = σ0 ·Aα (3)

The dashed lines correspond to α=2/3 and α=1, resp.

The observed values of α are close to 2/3. They show
no clear dependence on either xF or p2

t . However, they are
also compatible with the xF –dependence observed in other
experiments and which can be summarized as α(xF ) =
0.8 − 0.75xF +0.45x2

F [37] (solid line in the upper part of
each panel of Fig. 4).

The total production cross sections per nucleus for cop-
per and carbon in the range xF > 0 are listed in Table 1.
Only statistical errors are shown.

The total production cross sections per nucleon for
xF > 0 were obtained by extrapolating the differential
cross sections measured on Cu and C in each bin of xF

using the values of α obtained in the same bin. They are
listed as σ0 in Table 1.

5 Discussion

In this analysis two models have been considered as repre-
senting the theoretical grounds of the physics under study.
These are the event generator PYTHIA [20] and so called
quark-gluon string model (QGSM) [21]- [28].

In PYTHIA hadronic collisions are described in terms
of the partonic subprocesses involving quarks and gluons
(e.g. gluon-gluon fusion, quark-gluon scattering etc.). The
corresponding cross sections are calculated according to
standard QCD Feynman rules. We want to point out that
PYTHIA was used with its default set of parameters, and
no attempt was made to change them to obtain better
fits to our experimental data, since this would destroy the
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Table 5. Differential production cross sections of K+
890 as a function of xF in mb. An

18% systematic uncertainty has to be added to the statistical error of the cross section

Beam Neutrons π− Σ−

xF Copper Carbon Copper Carbon Copper Carbon

0.0–0.1 59.7 ± 20.9 13.2 ± 4.9 41.4 ± 8.2 25.1 ± 3.8 48. ± 7. 15. ± 2.
0.1–0.2 48.5 ± 6.4 16.5 ± 1.8 39.0 ± 3.0 10.5 ± 0.9 45. ± 2. 18.0 ± 0.9
0.2–0.3 28.2 ± 3.7 8.0 ± 1.0 14.7 ± 1.6 5.9 ± 0.5 12. ± 1. 6.5 ± 0.4
0.3–0.4 14.3 ± 1.9 2.5 ± 0.6 11.4 ± 1.0 3.2 ± 0.3 6.8 ± 0.7 2.2 ± 0.2
0.4–0.5 1.7 ± 1.1 1.6 ± 0.4 6.9 ± 0.7 2.0 ± 0.2 3.2 ± 0.4 1.2 ± 0.1
0.5–0.6 1.5 ± 0.7 0.6 ± 0.3 − 0.8 ± 0.2 1.3 ± 0.3 0.6 ± 0.1
0.6–0.7 − − − − 0.7 ± 0.3 0.3 ± 0.1
0.7–0.8 − − − − 0.5 ± 0.2 0.2 ± 0.1

agreement with other experimental results (for a discus-
sion of this point, see [34]).

On the contrary QGSM is based on an essentially non-
perturbative approach. The production of particles is
treated as a Reggeon exchange process, where parameters
of the exchanged Reggeon are determined by the quark
content of the initial and final state hadrons.

Coming now to the experimental results summarized
in Fig. 5, one can tell that the agreement with theoretical
estimations is certainly better for K∗+ mesons than for
K∗−, and in the case of pion or neutron beam it may be
classified as quantitative for both models.

In Σ− beam PYTHIA reproduces the xF spectrum
shape of K∗+ much better than QGSM. PYTHIA predic-
tion is in a good agriment with K∗− data in case of neu-
tron beam as well. In two other beams PYTHIA predicts
too strong leading effect. Contrarily QGSM systematically
underestimates the production of K∗− mesons in baryon
beams. Surprisingly, the model does not show significant
difference in the production of K∗− mesons by Σ− and by
pions, although the experimental data show a clear lead-
ing particle effect produced by the strange quark of the
Σ− beam particle.

We have observed in a separate simulation that even
the sole contribution of the strange quark fragmentation
into kaon shows a too steep xF dependence. Therefore, the
reason for the disagreement may be seen in the fact that
the model attributes too small momentum to the strange
quark in the hyperon. As a consequence, this slow s-quark
cannot produce a large-xF kaon.

On the other hand, we have complementary evidence
that QGSM attributes a too large momentum to diquarks
in baryon. This may be deduced from our earlier data on
the production of Ξ− hyperons by Σ−, π− and neutron
beams. As we have already pointed out in the previous
publication [34], the QGSM overestimates the leading ef-
fect in the Σ− and neutron beams predicting too flat xF

spectra for Ξ− hyperons. Also, the predictions made for
Σ− and neutron beams appear to be too close to each
other, as if there would be no essential difference between
the fragmentation of strange ds and non-strange dd di-
quarks.

The p2
t distributions are very similar for all targets and

beams particles. They follow a Gaussian behavior up to
1.–1.2GeV/c and then show a nongaussian behavior as
was already observed in our previous studies of hyperon
production [32,34].
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Table 6. Differential production cross sections of K+
890 as a

function of p2
t in mb/(GeV/c)2. An 18% systematic uncertainty

has to be added to the statistical error of the cross section

Beam π− Σ−

p2
t Copper Carbon Copper Carbon

0.0–0.2 21.5 ± 1.8 10.1 ± 0.7 19.8 ± 1.0 8.5 ± 0.4
0.2–0.4 11.8 ± 1.5 4.5 ± 0.5 7.8 ± 0.7 4.0 ± 0.3
0.4–0.6 8.9 ± 1.2 3.1 ± 0.4 7.7 ± 0.7 2.5 ± 0.2
0.6–0.8 5.1 ± 0.9 2.0 ± 0.3 5.2 ± 0.5 2.2 ± 0.2
0.8–1.0 3.3 ± 0.7 1.3 ± 0.3 4.6 ± 0.5 1.5 ± 0.2
1.0–1.2 2.7 ± 0.7 0.7 ± 0.2 4.0 ± 0.4 1.2 ± 0.1
1.2–1.4 2.4 ± 0.5 0.7 ± 0.2 2.2 ± 0.4 0.8 ± 0.1
1.4–1.6 2.6 ± 0.4 0.6 ± 0.1 2.7 ± 0.3 0.4 ± 0.1
1.6–1.8 1.5 ± 0.4 0.5 ± 0.1 1.3 ± 0.2 0.3 ± 0.1
1.8–2.0 0.7 ± 0.3 0.4 ± 0.1 1.1 ± 0.2 0.3 ± 0.1
2.0–2.2 0.9 ± 0.2 0.4 ± 0.1 0.8 ± 0.2 0.3 ± 0.1
2.2–2.4 − − 1.1 ± 0.2 0.3 ± 0.1

Table 7. Differential cross sections of K−
890 and K+

890 produc-
tion by neutrons as a function of p2

t in mb/(GeV/c)2. An 18%
systematic uncertainty has to be added to the statistical error
of the cross section

K−
890 K+

890

p2
t Copper Carbon Copper Carbon

0.0–0.3 25. ± 4. 10. ± 2. 25. ± 3. 7.4 ± 0.8
0.3–0.6 12. ± 3. 4.0 ± 1.0 11. ± 2. 3.6 ± 0.5
0.6–0.9 3. ± 2. 2.9 ± 0.9 9. ± 2. 2.0 ± 0.4
0.9–1.2 2. ± 2. 2.0 ± 0.6 5. ± 1. 0.5 ± 0.3
1.2–1.5 3. ± 1. 0.4 ± 0.3 2. ± 1. 0.6 ± 0.2

The dependence of the K∗± production cross section
on the atomic number shows the same behavior as ob-
served for other hadrons.

Further data on V 0 production cross sections and on
correlations in V 0V 0 pair production from experiment
WA89 are presently under analysis [38]. The results may
lead to a clearer understanding of the shortcomings of
both models.

6 Conclusions

We have presented the first measurement of K±
890 produc-

tion by Σ− hyperons at 345 GeV/c in fixed carbon and
copper targets. This measurement was supplemented by
measurements of K±

890 production by neutrons and pions,
exactly in the same experimental conditions.

The data clearly show the well known leading parti-
cle effect. The xF –dependence of the observed production
cross sections has been compared to calculations using the
Lund model (PYTHIA) and the quark-gluon string model.
Both models fail to describe the xF dependence of the
cross sections in particular for K−

890 production by Σ−,
where the data show a clear leading particle effect.
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Fig. 5. Comparison of the measured differential cross sections
with PYTHIA and QGSM predictions. The solid line shows
the fit of experimental data by (1)

Acknowledgements. It is a pleasure to thank J. Zimmer and
G. Konorova for their support in setting up and running the
experiment. We are also indebted to the staff of the CERN
Omega spectrometer group for their help and support, to the
CERN EBS group for their work on the hyperon beam line
and to the CERN accelerator group for their continuous ef-
forts to provide good and stable beam conditions. We thank
B.Kopeliovich for helpful discussions.

References

1. F. Takagi, Phys. Rev. D 27, 1461 (1983)
2. T. Tashiro et al., Z. Phys. C 35, 21 (1987); T. Tashiro,

H. Noda, K. Kinoshita, Z. Phys. C 39, 499 (1988)
3. R.A.M.S. Nazareth, N. Prado, T. Kodama, Phys. Rev.

D 40, 2861 (1989;)R.A.M.S. Nazareth, T. Kodama,
D.A. Portes, Phys. Rev. D 46, 2896 (1992)

4. C.Evangelista et al., Phys. Lett. 70B, 373 (1977)
5. R.Singer et al., Nucl. Phys. B135, 265 (1978)
6. C.Cochet et al., Nucl. Phys. B155, 333 (1979)
7. H.Kichimi et al., Phys. Rev. D20, 37 (1979); Lett. N. Cim.

24, 129 (1979)
8. R.Sugahara et al., Nucl. Phys. B156, 237 (1979)
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